Alignment в контексте ИИ означает процесс настройки модели таким образом, чтобы её ответы соответствовали этике, законам и ценностям общества.
Обычно alignment происходит во время файн-тюнинга. Процесс включает в себя два этапа: ▪️Фаза обучения на инструкциях. На этой фазе LLM дают примеры целевых задач. ▪️Фаза оценки. На этой фазе человек или другая модель взаимодействуют с LLM и оценивают её ответы в режиме реального времени. На этом этапе может использоваться обучение с подкреплением, чтобы внести фидбэк в знания исходной модели.
Alignment в контексте ИИ означает процесс настройки модели таким образом, чтобы её ответы соответствовали этике, законам и ценностям общества.
Обычно alignment происходит во время файн-тюнинга. Процесс включает в себя два этапа: ▪️Фаза обучения на инструкциях. На этой фазе LLM дают примеры целевых задач. ▪️Фаза оценки. На этой фазе человек или другая модель взаимодействуют с LLM и оценивают её ответы в режиме реального времени. На этом этапе может использоваться обучение с подкреплением, чтобы внести фидбэк в знания исходной модели.
#NLP #глубокое_обучение
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Bitcoin mining is the process of adding new transactions to the Bitcoin blockchain. It’s a tough job. People who choose to mine Bitcoin use a process called proof of work, deploying computers in a race to solve mathematical puzzles that verify transactions.To entice miners to keep racing to solve the puzzles and support the overall system, the Bitcoin code rewards miners with new Bitcoins. “This is how new coins are created” and new transactions are added to the blockchain, says Okoro.
That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.
Библиотека собеса по Data Science | вопросы с собеседований from fr